三角形全等的判定
全等三角形是幾何中全等之一,經(jīng)過翻轉(zhuǎn)、平移后,角平分線上任意一點到角兩邊的垂直距離相等,且能夠完全重合的兩個三角形叫做全等三角形。全等三角形的對應(yīng)角相等、對應(yīng)邊相等。
三角形全等的判定
能夠完全重合(大小,形狀都相等的三角形)的兩個三角形稱為全等三角形。
當(dāng)兩個三角形完全重合時,互相重合的頂點叫做對應(yīng)頂點,互相重合的邊叫做對應(yīng)邊,互相重合的角叫做對應(yīng)角。
1、全等三角形對應(yīng)角所對的邊是對應(yīng)邊,兩個對應(yīng)角所夾的邊是對應(yīng)邊。
2、全等三角形對應(yīng)邊所對的角是對應(yīng)角,兩條對應(yīng)邊所夾的角是對應(yīng)角。
3、有公共邊的,公共邊一定是對應(yīng)邊。
4、有公共角的,角一定是對應(yīng)角。
5、有對頂角的,對頂角一定是對應(yīng)角。
證明三角形全等有哪幾種證明方法
一共有5個判定方法,如下:
1、邊邊邊(SSS):三條邊對應(yīng)相等的兩個三角形全等。
2、邊角邊(SAS):兩條邊和它們的夾角對應(yīng)相等的兩三角形全等。
3、角角邊(AAS):兩個角和一條邊對應(yīng)相等的兩三角形全等。
4、角邊角(ASA):兩個角和它們的夾邊對應(yīng)相等的兩三角形全等。
5、HL:直角三角形中,斜邊和一條直角邊對應(yīng)相等的兩三角形全等。
二個假命題
1、三個角對應(yīng)相等的兩三角形全等:AAA
2、兩條邊和一個角對應(yīng)相等的兩三角形全等:SSA
三角形全等的性質(zhì)
1、全等三角形的對應(yīng)角相等。
2、全等三角形的對應(yīng)邊相等。
3、全等三角形的對應(yīng)頂點位置相等。
4、全等三角形的對應(yīng)邊上的高對應(yīng)相等。
5、全等三角形的對應(yīng)角的角平分線相等。
6、全等三角形的對應(yīng)邊上的中線相等。
7、全等三角形面積相等。
8、全等三角形周長相等。
9、全等三角形可以完全重合。